Построение технической теории - теоретической радиотехники

На примере последовательного соединения омического сопротивления, индуктивности и емкости видно, каким образом могут строиться эквивалентные схемы пассивного двухполюсника (последовательного колебательного контура, изображенного в виде двухполюсника), где индуктивность заменяется индуктивным сопротивлением, а емкость - емкостным сопротивлением (см. рис. 19) [67].

Для проведения расчетов с использованием законов Ома и Кирхгофа эквивалентная схема должна быть сведена к еще более простой эквивалентной (функциональной, или математической) схеме, т.е. определенным образом идеализированной электрической цепи - схеме замещения более высокого уровня абстракции [68]. Первые экспериментальные и теоретические результаты были получены Омом еще в 1824 г. Всего три года спустя позже он издал книгу под названием "Математически обработанные гальванические цепи", которая содержит все существенные законы электрических цепей. Однако он интересовался в первую очередь открытием физических закономерностей, а поэтому не использовал свои достижения для расчета больших электрических цепей. Гораздо больший вклад в становление теории расчета электрических цепей внес Кирхгоф. Он сформулировал в своей первой работе 1845 г. названные его именем законы в несколько более общей форме, чем у Ома. Собственно, рож дение теории электрических цепей следует, однако, отнести к 1847 г., когда Кирхгоф опубликовал свою работу под названием "О решении уравнений, с помощью которых проводится исследование линейного распределения гальванических токов". В этой работе впервые дается методика анализа электрических цепей с применением теории графов. В работах «О сохранении силы» (1847) и «О некоторых законах распределения электрических токов в телесных проводниках с применением для опытов с животным электричеством» (1853) Гельмгольц заложил основы динамической теории электрических цепей и «теории двухполюсников». Окончательную форму теория приобрела благодаря Флемингу и Штейнмецу, перенесшим на «линейные RLC-цепи с синусоидальным возбуждением» методы, развитые для линейных электрических цепей, состоящих из омических сопротивлений [69].

Любой реактивный двухполюсник можно представить в виде омического сопротивления, индуктивности и емкости, а можно - в виде комплексного сопротивления (Z). Активный двухполюсник может быть заменен эквивалентной ЭДС с внутренним сопротивлением z. Выделяя в электрической цепи замкнутые контуры и производя соответствующие замены активных и реактивных двухполюсников, можно получить систему линейных уравнений для всех токов и напряжений в сети (см. рис. 20) [70]. Число независимых контуров определяется соотношением n - р - q + 1, где р - число ветвей в графе, представляющем сеть, q - число его узлов. В каждом контуре вводятся свои токи. Первое правило Кирхгофа требует равенства нулю суммы всех токов в каждом узле графа, второе - равенство нулю суммарного падения напряжения в каждом контуре.

Например, схема, представленная на рис. 21 я, может быть сведена к графу, имеющему 3 узла (q = 3) и 5 ветвей (п = 5) (рис. 21 б) [71].

"Каждому физическому процессу будет точно соответствовать определенная математическая операция. Электрическая цепь, состоящая из омических сопротивлений имеет при данных ЭДС лишь одну единственную схему распределения напряжений или токов, т.е. ее линейные уравнения имеют единственное решение. Такая однозначность выводится уже из законов Кирхгофа, которые в свое время быстро приобрели права гражданства.

Перейти на страницу: 1 2 3 4 5 6 7

Другое по технологическим наукам

От проблем пустоты к проблемам электричества
В 1640 году великий герцог Тосканский решил устроить фонтан на террасе своего дворца и приказал для этого подвести воду из ближайшего озера с использованием всасывающего насоса. Приглашенные флорентийские мастера сказали, что это невозможно, потому что воду нужно было всасывать на высоту более 32 ...