Явные катастрофы

Катастрофические отказы можно разделить на отказы под действием напряжения, когда пробивается насквозь диэлектрик или разрушается поверхность кристалла, и отказы под действием мощности или тока, которые часто опознают по горячим точкам или расплавленным участкам на кристалле. Разряд может вызвать такую высокую плотность тока на границе оксид-полупроводник, что происходит локальное расплавление полупроводникового материала, а в оксиде образуется точечное отверстие диаметром около 1 мкм.

Элементы, чувствительные к напряжению (тонкий диэлектрик структур металл-диэлектрик-полупроводник, изолирующий оксид и т.д.), отказывают вследствие электрического пробоя. Отказы внутри прибора под действием напряжения происходят из-за разницы постоянных времени разряда в смежных или пересекающихся участках, что приводит к появлению напряжений, превышающих электрическую прочность диэлектрика. Другие элементы (р-n-переходы, металлизированные дорожки и т.д.) чувствительны к мощности. В этом случае критическими параметрами оказываются форма импульса тока, протекающего при разряде, его длительность и амплитуда, которые при соответствующем сочетании могут создать уровень мощности, приводящий к термическому пробою. Отказы под действием мощности или тока происходят обычно между схемной частью и землей или питающей шиной. Шины питания и заземления, как правило, являются проводниками с наибольшей площадью и способны хранить наибольший заряд, высвобождая при разряде максимальную энергию.

Считается, что есть шесть наиболее распространенных и связанных с электростатическим разрядом механизмов отказов: тепловой вторичный пробой, расплавление металлизации, объемный пробой, пробой диэлектрика, поверхностный пробой и газовый дуговой разряд. Первые три механизма определяются током (мощностью) разряда, остальные три - его напряжением. Главный виновник - выделяемое током разряда тепло, которого достаточно, чтобы расплавить используемые материалы. В момент разряда температура внутри микросхемы может достигать 1500°С, что выше точек плавления алюминия, меди и кремния.

Тепловой вторичный пробой известен как выгорание (выжигание) перехода. В этом случае температура на переходе приближается к точке плавления кремния, и начинают плавиться неоднородные “горячие” точки, что приводит к локальному расплавлению участка кремния. Если импульс разряда достаточно продолжителен, горячие точки увеличиваются до возникновения короткого замыкания на переходе. Однако термический или тепловой вторичный пробой может не проявиться немедленным коротким замыканием, а развиться позднее как результат миграции электронов и ионов.

Расплавление металлизации происходит, если разряд обладает достаточной мощностью для расплавления металла соединительных дорожек, так как толщина, а зачастую и ширина металлизированных дорожек настолько малы, что металл расплавляется, как у плавких предохранителей под действием повышенного значения тока.

Объемный пробой возникает в результате изменения параметров перехода из-за воздействия высоких температур под влиянием тока разряда, что приводит в конце концов к быстрой диффузии примесей и замыканию переходов в объеме (рис.4, 5).

Пробой диэлектрика возникает тогда, когда значение электрического поля превышает значение поля, связывающего электроны с ядрами атомов. Освобожденные электроны формируют внутренний ток, который дает лавинный эффект, разрушающий диэлектрик, - в нем образуется отверстие.

Поверхностный пробой, как следует из названия, реализуется на поверхности; он зависит от целого ряда параметров поверхности кристалла изделия. Явление закономерно приводит к утечке на переходе.

Газовый дуговой разряд аналогичен газовому разряду в вакуумных лампах; в конечном счете он вызывает испарение металлических частей изделия.

В большинстве случаев отказы приборов под воздействием разряда происходят не по одной из перечисленных причин, а от совокупности нескольких. Разрушение перехода носит очень сложный характер, и ни напряжение, ни ток по отдельности не играют решающей роли. Их совместное действие влияет на переход, изменяя его состояние, что, в свою очередь, сопровождается воздействием на ток и напряжение. В результате возникает точечное повышение температуры и расплавление кремния.

Перейти на страницу: 1 2

Другое по технологическим наукам

Вернер Сименс. Начало пути выдающегося изобретателя и промышленника
Осенью 1927 г. аспирант Кильского университета (Германия) в силу некоторых обстоятельств вынужден был бросить учебу и приступить к работе на одном из электротехнических заводов Берлина. Уже собеседование при приеме удивило его. Проверялась не глубина его знаний. «Беседа с начала и до конца был ...