Электродинамика Ампера

Ампер заботился больше о том, чтобы найти опытное подтверждение своей собственной гипотезы, нежели о критике чужих теорий. Он подумал, что если магнит понимать как систему круговых параллельных токов, направленных в одну сторону, то спираль из металлической проволоки, по которой проходит ток, должна вести себя как магнит, т. е. должна принимать определенное положение под воздействием магнитного поля Земли и иметь два полюса. Опыт подтвердил предположения относительно поведения такой спирали под действием магнита, но не совсем ясны были результаты опыта, относящиеся к поведению спирали под действием магнитного поля Земли. Тогда Ампер решил взять для выяснения этого вопроса один-единственный виток проводника с током; оказалось, что виток ведет себя точно как магнитный листок.

Таким образом обнаружилось непонятное явление: один единственный виток ведет себя как магнитная пластина, а спираль, которую Ампер считал в точности эквивалентной системе магнитных пластинок, вела себя не совсем как магнит. Пытаясь разобраться, в чем тут дело, Ампер с удивлением обнаружил, что в электродинамических явлениях спиральный проводник ведет себя точно как прямолинейный проводник с теми же концами. Из этого Ампер заключил, что в отношении электродинамических и электромагнитных действий элементы тока можно складывать и разлагать по правилу параллелограмма. Поэтому элемент тока можно разложить на две составляющие, из которых одна направлена параллельно оси, а другая — перпендикулярно. Если суммировать результаты действия разных элементов спирали, то результирующая окажется эквивалентной прямолинейному току, идущему по оси, и системе круговых токов, расположенных перпендикулярно оси и направленных в одну сторону. Поэтому, чтобы спираль, по которой проходит ток, вела себя точно как магнит, нужно скомпенсировать действие прямолинейного тока. Этого Ампер, как известно, добился очень просто, выгнув вдоль. оси концы проводника. Но все же существовало различие между спиралью, по которой проходит ток, и магнитом: полюса спирали находились только на концах, тогда как полюса магнита — во внутренних точках. Чтобы устранить и это последнее различие, Ампер оставил свою первоначальную гипотезу о токах, прямо перпендикулярных оси магнита, и принял, что они расположены в плоскостях, находящихся под разными углами к оси.

Сразу же после своих первых электродинамических опытов Ампер решил вывести формулу для величины силы, возникающей между двумя элементами тока, чтобы из этой формулы можно было найти силу, действующую между двумя частями проводников данной формы и положения. Не имея возможности проводить опыты с элементами тока, Ампер в 1820 г. попытался сначала использовать следующий метод: провести тщательные и многочисленные измерения действия двух конечных токов разной формы и положения, затем принять какую-либо гипотезу о взаимодействии двух элементов тока, вывести из нее взаимодействие двух конечных токов и далее модифицировать эту гипотезу до тех пор, пока теоретические и экспериментальные результаты не окажутся в полном соответствии. Это классический путь, многократно испробованный в подобных исследованиях, однако Ампер вскоре убедился в том, что этот способ в данном случае был бы построен на сплошных догадках и желаемые результаты можно получить более прямым путем.

Установив, что подвижный проводник находится точно в равновесии под действием равных сил, вызываемых неподвижными проводниками, размеры и форму которых можно без нарушения равновесия изменять при соблюдении условий, допустимых опытом, Ампер получил возможность непосредственно рассчитать, каково должно быть взаимодействие двух элементов тока, чтобы равновесие при таких условиях действительно не зависело от формы и размеров неподвижных проводников. Он смог успешно применить этот гораздо более узкий критерий, потому что опытным путем было определено четыре случая равновесия, два из которых еще и сегодня приводятся в курсах физики (равенство абсолютной величины сил, действующих на одинаковые токи, текущие в противоположных направлениях; одинаковое действие на прямолинейный подвижный проводник двух неподвижных проводников, прямого и изогнутого, одинаково удаленных и имеющих концы в одних и тех же точках).

Перейти на страницу: 1 2 3 4

Другое по технологическим наукам

Искусственное освещение
условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения. История искусстве ...