Кинетическая теория газов

Согласно Крёнигу, газ состоит из совокупности молекул, которые он уподоблял идеально упругим шарикам, находящимся в абсолютно беспорядочном непрерывном движении (молекулярный хаос). Крёниг предположил также, что объем молекул пренебрежимо мал по сравнению с полным объемом газа и что взаимодействия молекул нет. В результате непрерывного движения молекулы сталкиваются между собой и соударяются со стенками сосуда, меняя соответственно при этом свою скорость. На основе этой гипотезы и учитывая закон Авогадро, Крёнигу удалось объяснить закон Бойля с помощью рассуждения, используемого и сейчас в курсах физики и приводящего к выводу, что произведение давления на объем единицы массы газа равно двум третям кинетической энергии поступательного движения всех молекул газа.

Таким образом, указанное произведение остается постоянным, пока остается постоянной кинетическая энергия поступательного движения молекул. Но согласно уравнению состояния газа это произведение меняется с изменением температуры, так что кинетическая энергия зависит от температуры. Отсюда возникает мысль определить температуру через среднюю кинетическую энергию, установив между этими двумя величинами вполне определенное математическое соотношение.

Таковы основы кинетической теории Крёнига, развитой Клаузиусом сначала в работе 1857 г., а затем в большом исследовании 1862 г.

Вскоре кинетической теории удалось объяснить многие явления (диффузию, растворение, теплопроводность и ряд других), рассчитать сначала относительные, а затем и абсолютные значения средних скоростей молекул различных газов при различных температурах, найти средний свободный пробег молекулы (Максвелл, 1866 г.), определенный как среднее значение длины прямолинейного пути, проходимого молекулой между последовательными соударениями. Исходя из этого нетрудно найти среднее число соударений каждой молекулы в определенное время (получаются громадные числа: при обычных условиях — порядка 5 миллиардов соударений в секунду).

Приведенная выше схема несколько упрощена, так что полученные выводы могут соответствовать опыту лишь в первом приближении. В частности, уравнение состояния, которое эта теория выводит для всех условий, в действительности справедливо лишь для сильно разреженных газов; мы уже говорили о первых экспериментальных наблюдениях отклонения реальных газов от этого уравнения состояния.

В 1873 г. появилась первая работа Ван дер Ваальса (1837—1923), в которой показано, что достаточно исправить изложенную выше теорию лишь в двух пунктах, чтобы прийти к выводам, применимым к реальным газам. Во-первых, надо учесть, что объем молекул не равен нулю, так что при неограниченном увеличении давления объем газа стремится не к нулю, а к определенному конечному значению, называемому "коволюмом" и связанному с полным объемом молекул газа. Во-вторых, нужно учесть взаимное притяжение молекул, т. е. силы сцепления (когезия), что приводит к некоторому уменьшению давления, потому что каждая молекула газа в момент ее соударения со стенкой как бы тормозится притяжением остальных молекул. Учитывая эти две поправки, Ван дер Ваальс дал уравнение состояния газа, носящее сейчас его имя и применимое даже к не очень плотной жидкости (например, к воде) в подтверждение заголовка оригинальной статьи Ван дер Ваальса "О непрерывности состояния жидкости и газа".

Другое по технологическим наукам

Трансформация трансформатора
В современной электроэнергетике, радиотехнике, электросвязи, системах автоматики широчайшее применение получил трансформатор, который по праву считается одним из распространенных видов электрического оборудования. Изобретение трансформатора – одна из замечательных страниц в истории электротехники. ...