Статистические законы

Мы уже говорили, что утверждение второго начала термодинамики в формулировке Клаузиуса не соответствовало традиционным механическим представлениям. Механика всегда рассматривала процессы природы как обратимые, тогда как второе начало термодинамики считает их необратимыми. Кинетическая теория превращает это несоответствие в противоречие: если теплота сводится к движению отдельных молекул, подчиняющемуся обратимым динамическим законам, то как же можно совместить обратимость отдельных процессов с необратимостью в целом? По-видимому, одной из причин острой борьбы между представителями энергетического направления — Ранкином, Гельмгольцем, Оствальдом, Махом— и сторонниками атомистики, которую "энергетики" считали слишком грубой и наивной, является именно вопрос о противоречии между обратимостью динамических процессов и вторым началом термодинамики. Согласно энергетической школе, противоречие может быть снято, если отказаться от одной из посылок, поэтому они были склонны отказаться от кинетической теории и вернуться к агностической концепции Майера.

Однако это противоречие было преодолено совсем иным путем. Первым пошел по этому пути Максвелл, поставив перед собой конкретную задачу кинетической теории газов: если молекулы газа находятся в непрерывном движении, то какова скорость определенной молекулы в определенный момент?

Максвелл начинает с замечания, что предположение Бернулли о равенстве скоростей всех молекул принять нельзя. Действительно, если бы даже в какой-либо определенный момент все молекулы газа имели одну и ту же скорость, то такое идеальное состояние тотчас нарушилось бы в результате взаимных соударений молекул. Так, если молекула А налетает на молекулу В перпендикулярно направлению ее движения, то легко рассчитать, что молекула В ускоряется, а молекула А замедляется.

Но проследить мысленно или рассчитать судьбу каждой отдельной молекулы из бесчисленного количества молекул, содержащихся в объеме газа, не представляется возможным. Можно, согласно Максвеллу, лишь определить статистическое распределение их скоростей, т. е. ответить не на вопрос о том, какова скорость отдельной определенной молекулы, а на вопрос, сколько молекул имеют определенную скорость в заданный момент. В основу своего расчета Максвелл положил следующие интуитивные предпосылки: ни одно направление движения не является привилегированным; ни одно значение скорости не является привилегированным или запрещенным (т. е. молекула может принимать все значения скорости от нулевой до максимальной); каждый газ, предоставленный самому себе, приходит в конце концов в стационарное состояние, в котором статистическое распределение скоростей остается постоянным во времени. Иными словами, если две молекулы со скоростями а и b сталкиваются и после соударения приобретают скорости р и q, то одновременно две другие молекулы со скоростями р и q сталкиваются и приобретают соответственно скорости а и b, так что число молекул, имеющих скорости а, b, . . ., р, q, . . ., остается постоянным. Исходя из этих гипотез и некоторых других, менее существенных, к которым он прибегает по ходу рассуждений, Максвелл пришел к известной формуле для распределения скоростей молекул газа. Эта формула вызвала длительную дискуссию, утихшую лишь в последние годы, когда молекулярные насосы позволили произвести ее экспериментальную проверку. Не прослеживая всей дискуссии, достаточно подчеркнуть огромное значение введения статистических законов. На место причинных динамических законов становятся статистические законы, позволяющие предвидеть эволюцию природы не с абсолютной достоверностью, а лишь с большой степенью вероятности. Понятие вероятности физического явления, неявно введенное Максвеллом, было применено в 1878 г. Людвигом Больцманом (1844—1906) для преодоления трудностей, связанных со вторым законом термодинамики. В связи с этим находится классический мысленный эксперимент Максвелла (1871 г.): пусть газ разделен на две части диафрагмой с небольшим отверстием, которое может перекрываться задвижкой, и пусть некий "демон", способный видеть молекулы и стерегущий этот проход, открывает задвижку для молекул, движущихся в одном направлении, и закрывает ее для молекул, движущихся в противоположном направлении. Через некоторое время произойдет сжатие всего газа в одной из половинок объема, и второе начало термодинамики будет нарушено.

Перейти на страницу: 1 2

Другое по технологическим наукам

Провозвестник отечественной электроавтоматики
Имя генерал-лейтенанта Константина Ивановича Константинова как зачинателя отечественной ракетной артиллерии и пиротехники было известно лишь военным специалистам. Однако его выдающиеся изобретения в области электроавтоматики и электроприборостроения долгое время оставались в забвении. И лишь в 195 ...