Главный опыт

Механизировав процесс натирания и увеличив натираемый предмет, Герике получил более мощный источник электрических зарядов (термин появится через 100 лет!). При этом он сразу же обнаруживает никем не описанное и необъяснимое явление. Птичье перышко натертый шар активно притянул, но затем также резко отбросил. Экспериментатор взял это перышко рукой и снова поднес к шару. Хотя шар вторично не натирался, он снова притянул и отбросил перо! Было над чем задуматься!

Герике решает выяснить, а сколько времени может обладать отталкивающей силой натертый серный шар? Он натирает шар, снимает его с остова установки и подносит к нему перышко.

Оно привычно притягивается и тут же отталкивается, зависая в воздухе. Исследователь пытается поднести опять к нему шар, но перо, не прикасаясь к шару, снова отлетает на некоторое расстояние. Если приблизить шар снизу, можно было заставить перышко подниматься вверх и перемещать его в любом направлении. Герике запишет впоследствии: «перышко можно было носить по всей комнате».

До нас дошло графическое отображение опыта. Оно приводится во всех публикациях, посвященных истории электричества, но вот в большинстве из них почему-то отсутствует один из важнейших элементов эксперимента – птичье перышко. Мы приводим полное отображение рисунка, где парящее перышко обозначено греческой буквой «альфа» (рис. 1).

Так было сделано одно из величайших открытий в области электричества: электрическая сила, как и магнитная, может быть не только притягивающей, но и отталкивающей.

Но не все было просто при проведении опытов. Парящее в воздухе перышко снова притягивалось серным шаром, после того как оно случайно касалось постороннего предмета, будь то пол, стена или нос экспериментатора. Когда приближали к парящему перышку горящую свечу – то же самое. Это было непонятным. Эксперимент задал больше вопросов, чем дал ответов. Одно было ясно – причина электрического притяжения тел, указанная Гильбертом, то есть истечение чего-то там из натираемых тел, создание там вакуума и затем притяжение легких предметов, не есть сила, вызываемая пустотой.

Интересно отметить, что об опыте по парению заряженных тел в электрическом поле, сделанном Герике, вспомнили через 250 (!) лет, чтобы с использованием новой экспериментальной техники попытаться ответить на вопрос о величине электрического заряда электрона. И это удалось сделать сравнительно просто.

Опыт Р. Милликена по определению заряда электрона

Американский физик Роберт Милликен в 1906 г. предположил, что если поместить в электрическом поле заряженную мельчайшую капето можно определить величину электрического заряда этой капельки. Он сделал установку, упрощенный вид которой изображен на рис. 2.

В специальную камеру пульверизатором П подаются мелкие капельки жидкости (масло, ртуть), которые заряжаются трением о сопло пульверизатора. Затем отдельные капли попадают между двух пластин заряженного воздушного конденсатора К. Через микроскоп М наблюдают за движением капелек. Вес капелек вычисляют, определяя под микроскопом их диаметр при известном удельном весе. Зная напряженность электрического поля и силу, удерживающую капельку в подвешенном состоянии (равную весу), можно было определить величину заряда. Милликен не отождествлял капельки жидкости с электронами.

Он просто определял электрические заряды капелек и обнаружил, что эти заряды ДИСКРЕТНЫ, т. е. не непрерывны, а кратны. Минимальный заряд, который только возможно было получить, должен был соответствовать согласно атомной теории заряду электрона.

«Установка Милликена для измерения заряда электрона дала столь убедительные результаты, что последние противники атомной теории вынуждены были сдаться» (Митчел Уилсон. Американские ученые и изобретатели. М., «Знание», 1964 г., с. 111).

Многочисленные опыты, и не только Милликена, привели к фундаментальному результату: тело может принимать или отдавать электрический заряд только порциями ЦЕЛОЧИСЛЕННО КРАТНЫМИ ЭЛЕКТРИЧЕСКОМУ ЗАРЯДУ, РАВНОМУ 1,6 x 10-19 кулонов. Несмотря на бесчисленные попытки, никогда не удавалось получить заряд меньше этой величины. Поэтому заряд е=1,60 x 10-19 Кл. называют ЭЛЕМЕНТАРНЫМ ЭЛЕКТРИЧЕСКИМ ЗАРЯДОМ, или «атомом электричества» [6]. А у истоков этого открытия стоял электрик номер два в истории электричества.

Жизнь Отто фон Герике богата событиями и даже приключениями, неординарна и вовсе не напоминает биографию кабинетного ученого. Родился он 20 ноября 1602 г. в немецком городе Магдебурге, первоклассной крепости на р. Эльбе. Город имел торговые привилегии со времен Карла Великого, поэтому был процветающим торговым центром, а также центром промышленных мануфактур.

Перейти на страницу: 1 2

Другое по технологическим наукам

Природа науки
Законы природы — скелет Вселенной. Они служат ей опорой, придают форму, связывают воедино. Все вместе они воплощают в себе умопомрачительную и величественную картину нашего мира. Однако важнее всего, наверное, то, что законы природы делают нашу Вселенную познаваемой, подвластной силе человеческого ...