Космические двигатели третьего тысячелетия

Кроме кинетического двигателя, возможны другие варианты двигательных установок нового типа. Например, двигатель ЭОЛ. Этот двигатель состоит из массозаборника, МГД-генератора и электрореактивного движителя. Принцип действия следующий. Захваченный магнитной воронкой ионизированный газ проходит через канал МГД-генератора и, через реактивное сопло, вытекает наружу. При частичном торможении газа в канале МГД-генератора, вырабатывается электрический ток, который приводит в действие реактивный движитель и все бортовые системы. Сила тяги электрореактивного движителя, превышает силу, возникающую в результате торможения газа внутри канала МГД-генератора. В результате, космический аппарат будет увеличивать скорость полета, отбрасывая часть своей массы.

Чтобы получить наибольшую удельную тягу, отработанный газ должен истекать из реактивного сопла со скоростью, равной скорости истечения рабочего тела из реактивного движителя. Для создания силы тяги целесообразно использовать термоэлектрические движители. В таких движителях электрический ток нагревает рабочее тело до высокой температуры, в результате скорость истечения может достигать несколько десятков километров в секунду. Регулируя температуру рабочего тела, можно регулировать скорость его истечения. Кроме того, термоэлектрический движитель развивает значительную силу тяги.

Плотность межпланетной среды переменная величина, и может колебаться в очень широких пределах. При незначительной плотности около 10–17кг/м³, эффективность входного устройства будет низкой. Чтобы обеспечить поступление ежесекундно около 1кг плазмы, при скорости полета 50км/с, нужна магнитная воронка диаметром около 1600км. Создание подобного устройства весьма проблематично. Очевидно, в межпланетном пространстве применение двигателя ЭОЛ будет возможным, лишь при наличии соответствующих благоприятных обстоятельств. Эти обстоятельства, могут возникать в результате различных космических процессов, или создаваться искусственным путем.

При прохождении ядра кометы вблизи Солнца, образуется газово-пылевое облако. Газы, из которых оно состоит, ионизируются под действием солнечных лучей и могут быть захвачены магнитной воронкой. Кроме твердого ядра размером 10 .50км, в строении комет выделяют газово-пылевую оболочку (размеры достигают иногда 2млн км), и хвост (он простирается иногда на 150млнкм). Если большие и малые планеты вращаются вокруг Солнца в одном направлении, то кометы не придерживаются никаких правил. В частности, комета Галлея движется практически навстречу Земле. Во время очередного прохождения кометы Галлея вблизи Солнца в марте 1986 года, автоматические межпланетные станции «Вега-1» и «Вега-2» пролетели на расстоянии всего несколько тысяч километров от ядра, через плотную газово-пылевую оболочку со скоростью около 80км/с.

Предположим, средняя плотность плазмы в газово-пылевом облаке 10–14кг/м³. Магнитная воронка диаметром около 40км, обеспечит ежесекундно поступление 1кг плазмы. При скорости 80км/с, кинетическая энергия 1кг плазмы 3200тыс.кДж. При общем КПД системы «магнитная воронка – МГД-генератор» 70%, получим 2240тыс.кДж электрического тока. Из них 50тыс.кДж, расходует холодильная установка. Остальные 2190тыс.кДж расходует электрореактивный движитель. При КПД движителя 70%, кинетическая энергия реактивной струи составит 1533тыс.кДж. Допустим, струя реактивного движителя истекает со скоростью 25740м/с, ее масса 4,628кг (импульс ускорения 119125кг∙м/с). Захваченная плазма проходит через канал МГД-генератора, и вытекает в межпланетное пространство со скоростью 25740м/с, ее масса 1кг (импульс торможения 54260кг∙м/с). Если разделить приращение импульса (64865кг∙м/с) на расход бортовых запасов реактивной массы (4,628кг), получим эффективную скорость истечения (14016м/с). Если разделить эффективную скорость истечения, на коэффициент 9,81м/с², получим удельную тягу 1430с. Тяговое усилие двигательной системы 6618кг.

Принимая массу космического аппарата равной 500т, получаем ускорение 0,130м/с². Если протяженность газово-пылевого облака 1млн км, продолжительность работы двигательной установки примерно 210 минут (при относительной средней скорости полета 80км/с). Общее приращение скорости составит лишь 1625м/с. Тяговое усилие двигательной установки (ускорение космического аппарата) можно значительно увеличить, за счет некоторого снижения удельной тяги. Простой расчет показывает следующее. Если увеличить ежесекундный расход бортовых запасов реактивной массы в 10 раз (46,28кг/с), удельная тяга уменьшится в 2,1 раза (670с). Тяговое усилие возрастет в 4,7 раза (31000кг). Ускорение космического аппарата составит 0,608м/с², общее приращение скорости около 7600м/с.

В процессе работы двигательной установки, нужно обеспечить отвод от всех ее частей, определенного количества тепловой энергии. Предположим, эта энергия равна 160тыс.кДж (или 5% кинетической энергии захваченной плазмы). В космическом пространстве отвод тепла возможен только излучением (энергетическая светимость пропорциональна четвертой степени температуры). Если температура излучающей поверхности будет равна 400К, площадь излучающей поверхности составит 110тыс.м². Таким образом, система отвода тепла если не самая тяжелая, то самая громоздкая часть энергоустановки. Кроме того, высокая вероятность попадания метеоритов, что может нарушить нормальную работу системы. Большие размеры вынуждают увеличивать скорость движения теплоносителя, что ограничивает размеры излучающей поверхности, а значит и мощность энергоустановки.

Перейти на страницу: 1 2 3 4 5

Другое по технологическим наукам

Ю.А. Гагарин – первый космонавт. Прорыв России в космос
Наш замечательный соотечественник К. Э. Циолковский еще в начале ХХ века утверждал: «Планета есть колыбель разума, но нельзя вечно жить в колыбели… Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все ...